subject
Engineering, 19.07.2019 20:30 jnelso5437

Aflywheel made of grade 30 cast iron (uts = 217 mpa, ucs = 763 mpa, e = 100 gpa, density = 7100 kg/m, poisson's ratio = 0.26) has the following dimensions: id = 150mm, od = 250 mm and thickness = 37 mm. what is the rotational speed in rpm that would lead to the flywheel's fracture?

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
The flow rate of air through a through a pipe is 0.02 m5/s. a pitot static tube is placed in the flow. the radius of the pitot static tube is 1 mm. assuming the flow to be steady and the air to be at 300k, calculate the difference in total and static pressure if the diameter of the pipe is: (a) d 0.1 m d 0.05 m (c) d 0.01 m
Answers: 2
question
Engineering, 04.07.2019 18:20
Most leaks in reciprocating air compressors can be detected and minimized by: (clo4) a)-detecting leakage areas using ultrasonic acoustic detector. b)-tightening joints and connections c)-replacing faulty equipment d)-all of the given options
Answers: 2
question
Engineering, 04.07.2019 19:20
Acommercial grade cubical freezer, 4 m on a side, has a composite wall consisting of an exterior sheet of 5.0-mm thick plain carbon steel (kst= 60.5 w/m k), an intermediate layer of 100-mm thick polyurethane insulation (kins 0.02 w/m k), and an inner sheet of 5.0- mm thick aluminium alloy (kal polyurethane insulation and both metallic sheets are each characterized by a thermal contact resistance of r 2.5 x 104 m2 k/w. (a) what is the steady-state cooling load that must be maintained by the refrigerator under conditions for which the outer and inner surface temperatures are 25°c and -5°c, respectively? (b) for power saving purpose, which wall material should be increased/reduced in. thickness in order to reduce 50% of the cooling load found in part (a)? redesign the thickness of the proposed material. 177 w/m-k). adhesive interfaces between the q=575.93 w
Answers: 2
question
Engineering, 04.07.2019 19:20
Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 k, 1 bar, with a volumetric flow rate of 0.25 m°/s, and exits at 325 k, 0.95 bar. the flow area is 0.04 m2. assuming the ideal gas model with k = 1.4 for the air, determine (a) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer, in kw flow rate, in kg/s, (b) the mass kg 0.3
Answers: 2
You know the right answer?
Aflywheel made of grade 30 cast iron (uts = 217 mpa, ucs = 763 mpa, e = 100 gpa, density = 7100 kg/m...
Questions
question
Mathematics, 28.11.2020 03:30
question
Mathematics, 28.11.2020 03:30
question
Mathematics, 28.11.2020 03:30
question
Mathematics, 28.11.2020 03:30
Questions on the website: 13722361