subject
Engineering, 18.02.2020 18:57 ElizabethF

The heat transfer coefficient for hydrogen flowing over a sphere is to be determined by observing the temperature–time history of a sphere fabricated from pure copper. The sphere, which is 20 mm in diameter, is at 75°C before it is inserted into the gas stream having a temperature of 27°C. A thermocouple on the outer surface of the sphere indicates 55°C 97 s after the sphere is inserted into the hydrogen. A) Assume and then justify that the sphere behaves as a spacewise isothermal object and calculate the heat transfer coefficient. B) What is the value of the specific heat of the copper at the average temperature of the process, in J/kg·K?C) What is the value of the lumped thermal capacitance of the sphere, in J/K?D) Solve for the thermal time constant, in sec. E) What is the value of the heat transfer coefficient, in W/m2· K?F) What is the value of the Biot number?

ansver
Answers: 3

Another question on Engineering

question
Engineering, 03.07.2019 15:10
Ahouse has the following electrical appliance usage (1) single 40w lamp used for 4 hours per day (2) single 60w fan used for 12 hours per day (3) single 200w refrigerator that runs 24 hours per day with compressor run 12 hours and off 12 hours find the solar power inverter size in watt with correction factor of 1.25.
Answers: 1
question
Engineering, 04.07.2019 18:10
For the closed feedwater heater below, feedwater enters state 3 at a pressure of 2000 psia and temperature of 420 °f at a rate of ix10 ibhr. the feedwat extracted steam enters state 1 at a pressure of 1000 psia and enthalpy of 1500 btu/lbm. the extracted er leaves at an enthalpy of 528.7 btu/lbm steam leaves as a saturated liquid. (16) a) determine the mass flow rate of the extraction steam used to heat the feedwater (10) b) determine the terminal temperature difference of the closed feedwater heater
Answers: 3
question
Engineering, 04.07.2019 18:10
Thermal stresses are developed in a metal when its a) initial temperature is changed b) final temperature is changed c) density is changed d) thermal deformation is prevented e) expansion is prevented f) contraction is prevented
Answers: 2
question
Engineering, 04.07.2019 18:10
The thermal expansion or contraction of a given metal is a function of the f a)-density b)-initial temperature c)- temperature difference d)- linear coefficient of thermal expansion e)- final temperature f)- original length
Answers: 2
You know the right answer?
The heat transfer coefficient for hydrogen flowing over a sphere is to be determined by observing th...
Questions
question
Mathematics, 12.07.2019 23:30
question
Mathematics, 12.07.2019 23:30
question
Biology, 12.07.2019 23:30
Questions on the website: 13722360