subject
Engineering, 05.03.2020 16:52 saggin2454

The temperature distribution across a wall 0.3 m thick at a certain instant of time is T(x) = a + bx + cx2, where T is in degrees Celsius and x is in meters, a = 200 degree C, b = -200 degree C/m, and c = 30 degree C/m2, The wall has a thermal conductivity of 1 W/m K. On a unit surface area basis, determine the rate of heat transfer into and out of the wall and the rate of change of energy stored by the wall. If the cold surface is exposed to a fluid at 100 degree C, what is the convection coefficient?

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Amass of 1.5 kg of air at 120 kpa and 24°c is contained in a gas-tight, frictionless piston-cylinder device. the air is now compressed to a final pressure of 720 kpa. during the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. calculate the boundary work input during this process.
Answers: 2
question
Engineering, 04.07.2019 18:10
Aplate clutch has a single pair of mating friction surfaces 250-mm od by 175-mm id. the mean value of the coefficient of friction is 0.30, and the actuating force is 4 kn. a) find the maximum pressure and the torque capacity using the uniform-wear model. b) find the maximum pressure and the torque capacity using the uniform-pressure model.
Answers: 3
question
Engineering, 04.07.2019 19:10
Estimate the change in specific internal energy au and specific enthalpy h from inlet to outlet for ethylene glycol (a liquid) flowing through each of the following devices: (a) a heat exchanger where the glycol temperature increases from 20 °c to 80 °c; (b) a pump operating at about 25 °c and increasing the glycol pressure from 100 kpa to 8 mpa.
Answers: 2
question
Engineering, 04.07.2019 19:10
Ahelical coil spring has a mean diameter of 50 mm, a wire diameter of 5.5 mm and is wound with a pitch of 10 mm. the spring steel has an ultimate strength of 1250 mpa. find the force needed to compress the spring solid and the wire stress in this condition. state whether the spring will return to its initial length.
Answers: 1
You know the right answer?
The temperature distribution across a wall 0.3 m thick at a certain instant of time is T(x) = a + bx...
Questions
Questions on the website: 13722363