subject
Engineering, 06.03.2020 23:18 ddlc28

Hot combustion gases, modeled as air behaving as an ideal gas, enter a turbine at 1100 kPa, 1600 K with a mass flow rate of 0.2 kg/s and exit at 300 kPa and 1000 K. If heat transfer from the turbine to its surroundings occurs at a rate of 16 kW, determine the power output of the turbine, in kW.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
The mass flow rate of the fluid remains constant in all steady flow process. a)- true b)- false
Answers: 1
question
Engineering, 04.07.2019 18:10
Aloaded platform of total mass 500 kg is supported by a dashpot and by a set of springs of effective stiffness 72 kn/m. it is observed that when the platform is depressed through a distance x = 12.5 cm below its equilibrium position and then released without any initial velocity; it reaches its equilibrium position in the shortest possible time without overshoot. find the position and velocity of the loaded platform 0.10 sec. after its release. if a further load of 400 kg is added to the platform, find, i) the frequency of damped vibrations, and i) the amplitude of vibration after 2 complete oscillations, given that the initial amplitude is 15 cm.
Answers: 1
question
Engineering, 04.07.2019 18:10
Give heat transfer applications for the following, (i) gas turbines (propulsion) ) gas turbines (power generation). (iii) steam turbines. (iv) combined heat and power (chp). (v) automotive engines
Answers: 1
question
Engineering, 04.07.2019 18:10
Determine whether or not it is possible to compress air adiabatically from k to 140 kpa and 400 k. what is the entropy change during this process?
Answers: 3
You know the right answer?
Hot combustion gases, modeled as air behaving as an ideal gas, enter a turbine at 1100 kPa, 1600 K w...
Questions
Questions on the website: 13722361