subject
Engineering, 13.03.2020 18:14 AnastaziaOpfer3822

A local biologist needs a program to predict population growth. The inputs would be: The initial number of organisms The rate of growth (a real number greater than 1) The number of hours it takes to achieve this rate of growth A number of hours during which the population grows For example, one might start with a population of 500 organisms, a growth rate of 2, and a growth period to achieve this rate of 6 hours. Assuming that none of the organisms die, this would imply that this population would double in size every 6 hours. Thus, after allowing 12 hours for growth, we would have 2000 organisms, etc. After each calculation, the program should be able to perform the next calculation or exit, depending on the user request.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Apump is used to circulate hot water in a home heating system. water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. the inlet pressure and temperature are 14.7 lbf/in.2, and 180°f, respectively; at the exit the pressure is 60 lbf/in.2 the pump requires 1/15 hp of power input. water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 btu/lb or. neglecting kinetic and potential energy effects, determine the temperature change, in °r, as the water flows through the pump.
Answers: 1
question
Engineering, 04.07.2019 18:10
Atmospheric air has a temperature (dry bulb) of 80° f and a wet bulb temperature of 60° f when the barometric pressure is 14.696 psia. determine the specific humidity, grains/lb dry air. a. 11.4 c. 55.8 d. 22.5 b. 44.1
Answers: 1
question
Engineering, 04.07.2019 18:10
Machinery that is a key part of the process and without which the plant or process cannot function is classifed as: (clo4) a)-critical machinery b)-essential machinery c)-general purpose machinery d)-none of the specified options.
Answers: 1
question
Engineering, 06.07.2019 02:30
Air (c-1.006 kj/kg.k, r-0.287 kj/kg.k) enters a nozzle steadily at 280 kpa and 77°c with a velocity of 50 m/s and exits at 85 kpa and 320 m/s. the heat losses from the nozzle to the surrounding medium at 20°c are estimated to be 3.2 kj/kg. determine (a) the exit temperature and (b) the total entropy change for this process. solve this problem using constant specific heats.
Answers: 1
You know the right answer?
A local biologist needs a program to predict population growth. The inputs would be: The initial num...
Questions
question
Physics, 28.01.2020 13:48
question
World Languages, 28.01.2020 13:48
Questions on the website: 13722363