subject
Engineering, 31.03.2020 03:43 Gtx014

In this problem, we will explore how deepening the pipeline affects performance in two ways: faster clock cycle and increased stalls due to data and control hazards. Assume that the original machine is a 5-stage pipeline with a 1 ns clock cycle. The second machine is a 12-stage pipeline with a 0.6 ns clock cycle. The 5-stage pipeline experiences a stall due to a data hazard every five instructions, whereas the 12-stage pipeline experiences three stalls every eight instructions. In addition, branches constitute 20% of the instructions, and the misprediction rate for both machines is 5%.

a. What is the speedup of the 12-stage pipeline over the 5-stage pipeline, taking into account only data hazards?

b. If the branch mispredict penalty for the first machine is 2 cycles but the second machine is 5 cycles, what are the CPIs of each, taking into account the stalls due to branch mispredictions?

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 12:10
On a average work day more than work place firs are reorted
Answers: 1
question
Engineering, 04.07.2019 18:10
Aloaded platform of total mass 500 kg is supported by a dashpot and by a set of springs of effective stiffness 72 kn/m. it is observed that when the platform is depressed through a distance x = 12.5 cm below its equilibrium position and then released without any initial velocity; it reaches its equilibrium position in the shortest possible time without overshoot. find the position and velocity of the loaded platform 0.10 sec. after its release. if a further load of 400 kg is added to the platform, find, i) the frequency of damped vibrations, and i) the amplitude of vibration after 2 complete oscillations, given that the initial amplitude is 15 cm.
Answers: 1
question
Engineering, 04.07.2019 18:10
Coiled springs ought to be very strong and stiff. si3n4 is a strong, stiff material. would you select this material for a spring? explain.
Answers: 2
question
Engineering, 04.07.2019 18:10
Afour cylinder four-stroke in-line engine has a stroke of 160mm, connecting rod length of 150mm, a reciprocating mass of 3kg and its firing order is 1-3-4-2. the spacing between cylinders is 100mm. i. show that the engine is in balance with regard to the primary inertia forces and primary 3. a and secondary inertia couples. li determine the out of balance secondary inertia force ii. propose ways of balancing this out of balance force and discuss the challenges that will arise
Answers: 3
You know the right answer?
In this problem, we will explore how deepening the pipeline affects performance in two ways: faster...
Questions
question
Mathematics, 13.09.2019 07:10
question
Mathematics, 13.09.2019 07:10
Questions on the website: 13722359