subject
Engineering, 08.04.2020 04:36 gorbyalexis

A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 60°C and a gage pressure of 300 kPa. The gas is heated, and the gage pressure at the final state is 600 kPa. The local atmospheric pressure is 1 atm. Determine the final temperature, in °C.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:20
Find the kinematic pressure of 160kpa. for air, r-287 j/ kg k. and hair al viscosity of air at a temperature of 50°c and an absolute (10 points) (b) find the dynamic viscosity of air at 110 °c. sutherland constant for air is 111k
Answers: 3
question
Engineering, 04.07.2019 18:20
Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 mpa and -10°c at a rate of 0.05 ka/s and leaves at 0.8 mpa and 50°c. the refrigerant is cooied in the condenser to 0.72 mpa and 26'c. it is then throttled to 0.15 mpa. sketch the t-s diagram for the system and evaluate: 6) the rate of heat removai from the refrigerated space (kw), it) the power input to the compressor (kw), ii) the isentropic efficiency of the compressor (%), and iv) the cop of the refrigerator.
Answers: 2
question
Engineering, 04.07.2019 19:10
The sum of the normal stresses does not change as the stress state rotates through an angle. a)-trune b)- false
Answers: 2
question
Engineering, 06.07.2019 03:10
Consider two concentric spheres forming an enclosure with diameters of 12 cm and 18 cm the spheres are maintained at uniform temperatures ti-50°c and t2 = 250°c and have emissivities .45 and .8, respectively. determine the net rate of radiation heat transfer between the two spheres per unit surface area.
Answers: 1
You know the right answer?
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 60°C and a gage pres...
Questions
question
Mathematics, 20.08.2021 01:10
Questions on the website: 13722367