subject
Engineering, 24.04.2020 16:24 emilaw7823

A simple beam AB is subjected to a distributed load of intensity q( ) x q 5 0 sin / px L, where 0 q is the maximum intensity of the load (see gure). Derive the equation of the deflection curve, and then determine the deflection max d at the midpoint of the beam. Use the fourth-order differential equation of the deflection curve (the load equation).

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Steel is coated with a thin layer of ceramic to protect against corrosion. what do you expect to happen to the coating when the temperature of the steel is increased significantly? explain.
Answers: 1
question
Engineering, 04.07.2019 18:10
Hydraulic fluid with a sg. of 0.78 is flowing through a 1.5 in. i.d. pipe at 58 gal/min. the fluid has an absolute viscosity of 11.8 x 105 lbf-sec/ft2. is the flow laminar, turbulent or within the critical range? give both a numerical reynolds number and a term answer.
Answers: 3
question
Engineering, 04.07.2019 18:20
Select any two (2) areas of applications of chain-drive. (clo4) a)-permanent lubrication necessary b)-hydraulic forklift truck operation c)-rigging and heavy moving materials d)-relatively high maintenance costs e)-costlier than belt drives
Answers: 2
question
Engineering, 04.07.2019 18:20
An open feedwater heater operates at steady state with liquid entering at inlet 1 with t? = 40°c and pl = 1 .2 mpa. water vapor att2-200°c and p2 = 1.2 mpa enters at inlet 2. saturated liquid water exits with a pressure of pa 1.2 mpa. neglect heat transfer with the surroundings and all kinetic and potential energy effects, determine the mass flow rate of steam at inlet 2 if the mass flow rate of liquid water at inlet 1 is given as 2 kg/s.
Answers: 3
You know the right answer?
A simple beam AB is subjected to a distributed load of intensity q( ) x q 5 0 sin / px L, where 0 q...
Questions
Questions on the website: 13722361