subject
Engineering, 05.05.2020 22:32 gonzalesalexiaouv1bg

Please solve the following problems using the hardness data from the Jominy end-quench test for 8660 steel and the data for cooling rates at different locations in round bars during several quenches related to positions along a Jominy bar. 1. For a 8660 steel bar with a 2-inch diameter quenched by mildly agitated oil, please estimate the Rockwell hardness for both the surface and the center of the cross section of the bar. 2. A 8660 steel bar was quenched using mildly agitated molten salt. If it is required that the center of the bar should have a Rockwell hardness of at least 45, what is the maximum value for the diameter of the bar?

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Aloaded platform of total mass 500 kg is supported by a dashpot and by a set of springs of effective stiffness 72 kn/m. it is observed that when the platform is depressed through a distance x = 12.5 cm below its equilibrium position and then released without any initial velocity; it reaches its equilibrium position in the shortest possible time without overshoot. find the position and velocity of the loaded platform 0.10 sec. after its release. if a further load of 400 kg is added to the platform, find, i) the frequency of damped vibrations, and i) the amplitude of vibration after 2 complete oscillations, given that the initial amplitude is 15 cm.
Answers: 1
question
Engineering, 04.07.2019 18:10
Water at 70°f and streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. 0 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. if both streams enters the mixing chamber at the same mass flow rate, determine the temperature and the quality of the existing system.
Answers: 2
question
Engineering, 04.07.2019 18:10
Coiled springs ought to be very strong and stiff. si3n4 is a strong, stiff material. would you select this material for a spring? explain.
Answers: 2
question
Engineering, 04.07.2019 19:20
Ashielded metal arc-welding operation is accomplished in a work cell by a fitter and a welder. the fitter takes 5.5 min to load components into the welding fixture at the beginning of the work cycle, and 1.5 min to unload the completed weldment at the end of the cycle. the total ength of the weld seams 1200 mm, and the travel speed used by the welder averages 300 mm/min. every 600 mm of seam length, the welding stick must be changed, which takes 0.8 min. while the fitter is working, the welder is idle (resting): and while the welder is working the fitter is idle. (a) determine the average arc-on time as a fraction of the work cycle time. (b) how much improvement in arc-on time would result if the welder used flux-cored arc welding (manually operated), given that the spool of weld wire must be changed every 10 weldments, and it takes the welder 5.0 min to accomplish the change? (c) what are the production rates for these two cases (weldments completed per hour)? attach your work and solutions.
Answers: 1
You know the right answer?
Please solve the following problems using the hardness data from the Jominy end-quench test for 8660...
Questions
Questions on the website: 13722362