subject
Engineering, 05.06.2020 04:00 lilbit217

Determine the flow velocities at the inlet and exit sections of an inclined tapering pipe using fluid flow theory and given pressure
readings and flow rates.

There is a sloping pipeline that has one end 1.35 m higher than the
other. The pipe section tapers from 0.95 m diameter at the top end to
0.44m diameter at the lower end. The difference in pressure between
the two sections is 12.35kPa, with pressure being greater at higher
level.
Your task is to determine the inlet and exit velocities and the
volume
flow rate of the inclined pipe.

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Ajournal bearing has a journal diameter of 3.250 in with a unilateral tolerance of 20.003 in. the bushing bore has a diameter of 3.256 in and a unilateral tolerance of 0.004 in. the bushing is 2.8 in long and supports a 700-lbf load. the journal speed is 900 rev/min. find the minimum oil film thickness and the maximum film pressure for both sae 20 and sae 20w-30 lubricants, for the tightest assembly if the operating film temperature is 160°f. a computer code is appropriate for solving this problem.
Answers: 3
question
Engineering, 06.07.2019 02:30
Air (c-1.006 kj/kg.k, r-0.287 kj/kg.k) enters a nozzle steadily at 280 kpa and 77°c with a velocity of 50 m/s and exits at 85 kpa and 320 m/s. the heat losses from the nozzle to the surrounding medium at 20°c are estimated to be 3.2 kj/kg. determine (a) the exit temperature and (b) the total entropy change for this process. solve this problem using constant specific heats.
Answers: 1
question
Engineering, 06.07.2019 02:30
Precipitation hardening can be achieved in many light alloys by a three-step heat treatment. what is carried out and what is the purpose at each step? why is such a treatment necessary based on the nucleation and growth theory of phase transformation. compare this treatment with tempering martensite for carbon steels (similarities and differences).
Answers: 1
question
Engineering, 06.07.2019 03:10
Consider two concentric spheres forming an enclosure with diameters of 12 cm and 18 cm the spheres are maintained at uniform temperatures ti-50°c and t2 = 250°c and have emissivities .45 and .8, respectively. determine the net rate of radiation heat transfer between the two spheres per unit surface area.
Answers: 1
You know the right answer?
Determine the flow velocities at the inlet and exit sections of an inclined tapering pipe using flu...
Questions
question
Mathematics, 28.01.2020 10:31
question
Biology, 28.01.2020 10:31
question
Advanced Placement (AP), 28.01.2020 10:31
question
English, 28.01.2020 10:31
question
Mathematics, 28.01.2020 10:31
Questions on the website: 13722367