subject
Engineering, 07.07.2021 01:00 Kimmie2019

Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 3.333 seconds. In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution time in Eager Mode is 2 seconds (i. e., Eager Mode execution time is 60% of Lazy Mode execution time). After finishing computation, the app sends some data to the cloud, regardless of the mode it’s in. The data size sent to the cloud is 600 MB. The bandwidth of communication is 15 MBps for WiFi and 5 MBps for 4G. Assume that the communication radio is idle during the computation time.
Assume that the communication radio for WiFi has a power consumption of 75 mW when active and 15 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 190 mW when active and 25 mW when idle. The Idle Power of the CPU is 7 mW, whereas the Active Power of the CPU is 5 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other words: P = (Idle Power) + (Utilization)*(Power per unit Utilization).
A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.
What is the average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G?

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
During a steady flow process, the change of energy with respect to time is zero. a)- true b)- false
Answers: 2
question
Engineering, 04.07.2019 18:10
For the closed feedwater heater below, feedwater enters state 3 at a pressure of 2000 psia and temperature of 420 °f at a rate of ix10 ibhr. the feedwat extracted steam enters state 1 at a pressure of 1000 psia and enthalpy of 1500 btu/lbm. the extracted er leaves at an enthalpy of 528.7 btu/lbm steam leaves as a saturated liquid. (16) a) determine the mass flow rate of the extraction steam used to heat the feedwater (10) b) determine the terminal temperature difference of the closed feedwater heater
Answers: 3
question
Engineering, 04.07.2019 18:20
Air flows over a heated plate àt a velocity of 50m/s. the local skin factor coefficient at a point on a plate is 0.004. estimate the local heat transfer coefficient at this point.the following property data for air are given: density = 0.88kg/m3 , viscosity 2.286 x 10 ^-5 kgm/s , k = 0.035w/mk ,cp = 1.001kj/kgk. use colburn reynolds analogy.
Answers: 1
question
Engineering, 04.07.2019 18:20
An open feedwater heater operates at steady state with liquid entering at inlet 1 with t? = 40°c and pl = 1 .2 mpa. water vapor att2-200°c and p2 = 1.2 mpa enters at inlet 2. saturated liquid water exits with a pressure of pa 1.2 mpa. neglect heat transfer with the surroundings and all kinetic and potential energy effects, determine the mass flow rate of steam at inlet 2 if the mass flow rate of liquid water at inlet 1 is given as 2 kg/s.
Answers: 3
You know the right answer?
Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the ex...
Questions
question
Biology, 19.04.2021 15:30
Questions on the website: 13722367