subject
Physics, 24.10.2019 18:43 girlydiy17

Aconstant electric field with magnitude 1.50 ✕ 103 n/c is pointing in the positive x-direction. an electron is fired from x = −0.0200 m in the same direction as the electric field. the electron's speed has fallen by half when it reaches x = 0.170 m, a change in potential energy of 4.56 ✕ 10−17 j. the electron continues to x = −0.210 m within the constant electric field. if there's a change in potential energy of −9.12 ✕ 10−17 j as it goes from x = 0.170 m to x = −0.210 m, find the electron's speed (in m/s) at x = −0.210 m. hint notice the electron turned around at some point. when the electron's speed is half its initial value, you are given the change in electric potential energy. the sum of δu and δk at this point is a conserved quantity, and is equal to zero, so δu + δk will be the same at all points along the electron's trajectory. you are given δu at the point of interest, so write δk in terms of velocities, substitute the velocity at the second point with the initial velocity divided by 2, simplify your equation, and solve for vf.

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 00:30
Which is not one of the major climate zones? question 3 options: rain forest polar tropical temperate
Answers: 1
question
Physics, 22.06.2019 04:00
1. a student believes that colder water makes fish swim faster. he sets up an experiment using different temperatures of water and measures the speed of the fish. (chapter 1 – page 9) a. what is the independent variable? b. what is the dependent variable? c. list two constants the student should have for this experiment. 2. convert 0.375 mg to grams. show your work with units in order to receive credit. (chapter 1 – page 16) 3. a race car drives one lap around a race track that is 500 meters in length. (chapter 2 – pages 45-46) a. what is the driver’s displacement at the end of the lap? b. how is his displacement different from the distance traveled? 4. how far does a car travel in 90 seconds if it is traveling at a speed of 55 m/s? show the appropriate equation from your textbook and show your work with units in order to receive credit. (chapter 2 – pages 46-47) 5. two cars, both with a mass of 500 kg, are traveling down a road. the first car has a velocity of 65 m/s east and the second car has a velocity of 85 m/s west. (chapter 2 – pages 54-55) a. calculate the momentum of both cars showing the appropriate equation from your textbook and your work with units in order to receive credit. b. which car has the larger momentum? explain how you know. 6. an airplane traveling at 60 m/s comes to a stop in 10 seconds. calculate the airplane’s acceleration. show the appropriate formula and show your work with units in order to receive credit. (chapter 2 – pages 57-58) 7. an individual has a weight of 735 newtons. what is the individual’s mass? show the appropriate equation from your book and show your work with the units in order to receive credit. (chapter 3 – pages 78-79) 8. in terms of newton’s first law of motion, explain why it is important to wear a seatbelt while riding in a car. (chapter 3 – page 86) 9. if you kick a tennis ball with 50 n of force and then kick a soccer ball with 50 n of force, explain the difference in their motion according to newton’s second law. (chapter 3 – pages 81-82) 10. describe how the velocity and acceleration of a skydiver changes as she falls from the plane back to the ground. (chapter 3 – pages 88-89) 11. a child is swinging on swing. describe what happens to both the kinetic energy and potential energy of the child as she swings up and down. (chapter 4 – pages 123) 12. driving to work one morning, you get a flat tire. when using the car jack, you apply 120 n of force to the jack and the jack in turn applies 2000 n of force to lift the car up. what is the mechanical advantage of the jack? (chapter 4 – page 111) 13. a temperature of a 50 kg block increases by 15°c when 337,500 j of thermal energy are added to the block. (chapter 5 – pages 141-142) a. what is the specific heat of the object? show the appropriate equation from your book and show your work with units. b. what is the block made of? use the chart on page 141. c. is this block a good material for insulators or conductors? 14. explain why gases make better thermal insulators than solids or liquids. give one example from the textbook of a thermal insulator that can keep you warm on a cold day. (chapter 5 – pages 147) 15. several days after a snowfall, the roofs of some homes on your street have almost no snow on them, while the roofs on other homes are still snow covered. assuming they have all received the same amount of sunlight, give one reason for this observation related to thermal energy and insulation. 16. if you purchased a string of lights, how could you determine if the lights were wired in series or parallel? (chapter 6 – pages 185-186) 17. what happens to the current in a device if the resistance is decreased but the voltage stays the same? (chapter 6 – pages 181-182) 18. you measure the voltage difference of a circuit to be 15 v and the resistance to be 675 ω. what is the current in the circuit? show the appropriate equation from your book and show your work with units. (chapter 6 – page 182) 19. explain why a magnet from your refrigerator could not be used to lift something as heavy as a car. (chapter 7 – pages 202-203)
Answers: 3
question
Physics, 22.06.2019 13:00
At a certain instant after jumping from the airplane a, a skydiver b is in the position shown and has reached a terminal (constant) speed vb = 52 m/s. the airplane has the same constant speed va = 52 m/s, and after a period of level flight is just beginning to follow the circular path shown of radius ρa = 2330 m. (a) determine the velocity and acceleration of the airplane relative to the skydiver. (b) determine the time rate of change of the speed vr of the airplane and the radius of curvature ρr of its path, both as observed by the nonrotating skydiver.
Answers: 3
question
Physics, 22.06.2019 14:30
A10nc charge sits at a point in space where the magnitude of the electric field is 1500 n/c. what will the magnitude of the field be if the 10 nc charge is replaced by a 20 nc charge? assume the system is big enough to consider the charges as small test charges.
Answers: 1
You know the right answer?
Aconstant electric field with magnitude 1.50 ✕ 103 n/c is pointing in the positive x-direction. an e...
Questions
Questions on the website: 13722361