subject
Physics, 30.10.2019 06:31 baseball1525

Amarching band consists of rows of musicians walking in straight, even lines. when a marching band performs in an event, such as a parade, and must round a curve in the road, the musician on the outside of the curve must walk around the curve in the same amount of time as the musician on the inside of the curve. this motion can be approximated by a disk rotating at a constant rate about an axis perpendicular to its plane. in this case, the axis of rotation is at the inside of the curve. consider two musicians, alf and beth. beth is four times the distance from the inside of the curve as alf.

knowing that if beth travels a distance s during time δt, how far does alf travel during the same amount of time= (1/4)s

if alf moves with speed v, what is beth's speed? speed in this case means the magnitude of the linear velocity, not the magnitude of the angular velocity.

a)4v b) v c) v/4

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 09:30
Which of these is not a possible type of energy transformation? a. electrical energy into light energy b. sound energy into nuclear energy c. potential energy into kinetic energy d. kinetic energy into mechanical energy
Answers: 1
question
Physics, 22.06.2019 10:40
As you are trying to move a heavy box of mass m, you realize that it is too heavy for you to lift by yourself. there is no one around to , so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. you pull up on the rope to lift the box. use g for the magnitude of the acceleration due to gravity and neglect friction forces. once you have pulled hard enough to start the box moving upward, what is the magnitude f of the upward force you must apply to the rope to start raising the box with constant velocity? express the magnitude of the force in terms of m, the mass of the box.
Answers: 1
question
Physics, 22.06.2019 16:00
State the following: boyle's law and charle's law
Answers: 2
question
Physics, 22.06.2019 22:00
The inside surface of a cylindrical-shaped cave of inner diameter 1.0 m is continuously covered with a very thin layer of water. the cave is very long and it is open on both ends. the water on the cave surface is at a constant temperature of 15.5 °c. the cave is constantly exposed to wind such that 15.5 °c air flows through the cave at 4.5 m/s. the kinematic viscosity of the air is 14.66 x 10-6 m2/s and the molecular diffusion coefficient of water vapor in the air is 0.239 x 10-4 m2/s. because the cave diameter is so large, the flow of wind down the length of the cave, in the x direction, can be treated like it is external flow and the cave surface can be approximated as flat where appropriate. calculate the x value, in a) the transition to turbulent flow occurs at rex meters, where the air flow transitions from laminar to turbulent along the inside surface of the cave b) calculate the x value, in meters, where the bulk steady state concentration of water vapor in the air flowing in the cave is 10% of the saturation concentration. assume the air at the surface of the water layer is 100% saturated with water vapor. assume the wind entering the cave contained no moisture before it entered the cave. take into account the transition from laminar to turbulent flow when solving part b
Answers: 1
You know the right answer?
Amarching band consists of rows of musicians walking in straight, even lines. when a marching band p...
Questions
Questions on the website: 13722361