subject
Physics, 24.07.2020 01:01 kendrawalraven

During a snowball fight, two snowball with masses of 0.30 kg and 0.70 kg, respectively, are thrown in such a manner that they meet head-on (traveling opposite directions) and combine to form a single mass. The magnitude of initial velocity for each is 10.4 m/s. What is the speed of the 1.0 kg mass immediately after the collision

ansver
Answers: 1

Another question on Physics

question
Physics, 21.06.2019 23:00
Follow these directions and answer the questions. 1. set up the ripple tank as in previous investigations. 2. bend the rubber tube to form a "concave mirror" and place in the ripple tank. the water level must be below the top of the hose. 3. generate a few straight pulses with the dowel and observe the reflected waves. do the waves focus (come together) upon reflection? can you locate the place where the waves meet? 4. touch the water surface where the waves converged. what happens to the reflected wave? 5. move your finger twice that distance from the hose (2f = c of c, center of the curvature) and touch the water again. does the image (the reflected wave) appear in the same location (c of c)? you may have to experiment before you find the exact location. sometimes it is hard to visualize with the ripple tank because the waves move so quickly. likewise, it is impossible to "see" light waves because they have such small wavelengths and move at the speed of light. however, both are examples of transverse waves and behave in the same way when a parallel wave fronts hit a curved surface.
Answers: 1
question
Physics, 22.06.2019 00:20
Suppose that an electromagnetic wave which is linearly polarized along the x−axis is propagating in vacuum along the z−axis. the wave is incident on a conductor which is placed at z > 0 region of the space. the conductor has conductivity σ, magnetic permeability µ and electric permittivity ε. (a) find the characteristic time for the free charge density which dissipates at the conductor. (b) write the maxwell equations and derive the wave equation for a plane wave propagating in a conductor. (c) find the attenuation distance at which the incident amplitude reduces to e ^−1 of its initial value. (d) find the electric and magnetic fields inside the conductor. 8 (e) find the power loss per area of the incident electromagnetic wave at the surface of conductor.
Answers: 1
question
Physics, 22.06.2019 18:30
Anonzero net force acts on a particle and does work. which one of the following statements is true? the kinetic energy of the particle changes, but the speed of the particle does not change. the kinetic energy of the particle does not change, but the speed of the particle does change. the kinetic energy of the particle changes, but the velocity of the particle does not change. the kinetic energy and the speed of the particle change, but the velocity of the particle does not change. the kinetic energy, speed, and velocity of the particle change.
Answers: 1
question
Physics, 23.06.2019 12:00
What is the main difference between the atmospheres of jupiter and neptune? a. neptune does not have hydrogen and helium. b. jupiter does not have hydrogen and helium. c. jupiter has methane clouds. d. neptune has methane clouds.
Answers: 2
You know the right answer?
During a snowball fight, two snowball with masses of 0.30 kg and 0.70 kg, respectively, are thrown i...
Questions
question
English, 24.03.2020 05:56
question
Physics, 24.03.2020 05:57
question
Mathematics, 24.03.2020 05:57
question
Mathematics, 24.03.2020 05:58
question
Mathematics, 24.03.2020 05:58
Questions on the website: 13722363