subject
Physics, 28.07.2020 19:01 andreastyles1603

The table contains errors. Which factors should be switched to correct the errors?

ansver
Answers: 2

Another question on Physics

question
Physics, 21.06.2019 18:00
Which surface feature of the moon is characterized by mountainous areas? terrae craters maria regolith
Answers: 1
question
Physics, 22.06.2019 06:20
Atwo-stage air compressor operates at steady state, compression 10m^3/min of air from 100 kpa and 300k to 1200 kpa. an intercooler between the two stages cools the air to 300k at a constant pressure of 350 kpa. the compression processes are isentropic. a) calculate the power required to run the compressor, in kw b) compare the result to the power required for isentropic compression from the same inlet state to the same final pressure.
Answers: 1
question
Physics, 22.06.2019 06:30
5submission this assignment is worth 20 points total. you are required to submit the following by next lab: 1. (3 points) determine the equation for the output angular velocity ω2 = θ˙ 2 as a function of θ1, ω1 = θ˙ 1 and α. you must show all your work to receive credit. 2. (2 points) use the result of problem#1 to plot ω2 over 0 ≤ θ1 ≤ 360deg with ω1 = 360deg/sec. do this for α = {10,30}deg. show the results on the same plot and properly label the axes, title, legend. for this you can use matlab or ms excel. 3. (3 points) determine the equation for the output angular acceleration ω˙ 2 and create a plot similar to the one in problem#2. 4. (10 points) submit plots of the results (ω2 and ω˙ 2) obtained from creo/mechanism and compare them to results of problem#2 and problem#3. note that you should do these comparisons for the two cases with α = {10,30}deg. 5. (2 points) provide a brief explanation of the results. did they match? what are the implications as misalignment angle increases?
Answers: 3
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
You know the right answer?
The table contains errors. Which factors should be switched to correct the errors?...
Questions
question
Computers and Technology, 11.01.2020 08:31
Questions on the website: 13722361