subject
Physics, 02.10.2020 17:01 sosick90501

The Doppler effect is the shift in frequency of sound waves when there is motion of the source of sound, the listener, or both. Fs is the frequency of sound waves from the source. a. Assume that the listener does not move. Find the frequency of sound waves that the listener detects (Fl) when the source of sound is moving towards the listener.

b. Assume that the listener does not move. Find the frequency of sound waves that the listener detects (Fl) when the source of sound is moving away from the listener.

c. Based on your findings in a and b, explain why you hear the higher pitch of the siren of the approaching ambulance, and notice that its pitch drops suddenly as the ambulance passes you.

d. Assume that the listener is moving towards the source of sound. Find the frequency of sound waves that the listener detects (Fl) when the source of sound is moving towards the listener.

e. Assume that the listener is moving away from the source of sound. Find the frequency of sound waves that the listener detects (Fl) when the source of sound is also moving away from the listener.

Fl is F subscript l Thanks.

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 01:00
Red’s momentum vector before the collision is green’s momentum vector after the collision. question 1 options: shorter than longer than equal to question 2 (1 point) saved since green bounces off red, this must be an collision. question 2 options: explosion inelastic elastic question 3 (1 point) saved red transfers of its momentum to green during the collision. question 3 options: little all most none question 4 (4 points) why does red transfer all its momentum to green? back up your answer with information from the simulation. write at least 2 sentences. question 4 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 5 (1 point) now make red much heavier than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). red during the collision because it transferred some momentum to green. question 5 options: sped up kept the same velocity slowed down question 6 (1 point) green sped up during the collision as it question 6 options: lost momentum to red maintained a constant momentum. gained momentum from red question 7 (1 point) after the collision . . question 7 options: red bounced off green and went to the left. green moved to the right. both green and red stopped as they have lost all momentum. red stopped and green moved to the right. both green and red moved to the right. question 8 (4 points) only some of red’s momentum was transferred to green. why did this occur? back up your answer with information from the simulation. write at least 2 sentences. question 8 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 9 (1 point) now make red much lighter than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). which is true about the collision? question 9 options: green slowed down after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have gained momentum. green slowed down after the collision therefore it must have gained momentum. question 10 (1 point) since green gained momentum, red had to have momentum because you cannot create or destroy momentum. question 10 options: lost kept the same amount of gained question 11 (1 point) since green was so much and harder to move, it caused red to bounce back to the left giving red . question 11 options: lighter. . . . negative heavier . . . . negative lighter. . . . positive heavier . . . . positive question 12 (4 points) now, click on more data at the bottom of the sim. play with different numbers for the masses and starting velocities. you can even make the starting velocities negative! tell me one thing you discovered by adjusting the speeds and masses. write at least 2 sentences. be specific and use words like velocity, momentum, mass, increased, decreased, etc. question 12 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. part 2: inelastic collisions question 13 (1 point) click on the "less data" box at the bottom of the sim. in the green box, slide the elasticity meter all the way to inelastic so there is 0% elasticity: make the masses whatever size suits you. make sure that green starts out with a velocity of 0 m/s – if you didn’t change this in the last step, you don’t need to do anything. push play and observe! true or false: when red and green collide, they stick together. question 13 options: true false question 14 (1 point) the velocity of red & green after the collision is the velocity that red started off with. question 14 options: larger than smaller than equal to
Answers: 1
question
Physics, 22.06.2019 05:20
Very large accelerations can injure the body, especially if they last for a considerable length of time. one model used to gauge the likelihood of injury is the severity index ( ), defined as =/ . in the expression, is the duration of the accleration, but is not equal to the acceleration. rather, is a dimensionless constant that = the number of multiples of that the acceleration is equal to.in one set of studies of rear-end collisions, a person's velocity increases by 13.7 km/h with an acceleration of 36.0 m/s2 . let the + direction point in the direction the car is traveling. what is the severity index for the collision?
Answers: 1
question
Physics, 22.06.2019 08:20
At an oceanside nuclear power plant, seawater is used as part of the cooling system. this raises the temperature of the water that is discharged back into the ocean. the amount that the water temperature is raised has a uniform distribution over the interval from 10° to 25° c. what is the standard deviation of the temperature increase?
Answers: 1
question
Physics, 22.06.2019 11:30
(1 point) match the differential equations and their vector valued function solutions. you may wish to multiply at least one solution out fully, to make sure that you know how to do it. you can get the other answers quickly by process of elimination and just multiply out one row element.
Answers: 2
You know the right answer?
The Doppler effect is the shift in frequency of sound waves when there is motion of the source of so...
Questions
question
Mathematics, 30.03.2020 00:46
question
Mathematics, 30.03.2020 00:47
question
Mathematics, 30.03.2020 00:47
question
History, 30.03.2020 00:47
question
Mathematics, 30.03.2020 00:47
question
Mathematics, 30.03.2020 00:47
Questions on the website: 13722360