subject
Physics, 02.12.2020 17:00 shataviasumpter78

In the Fresnel circular aperture setup, the distances from the aperture to the light source and the reception screen are 1.5 m and 0.6 m, respectively. The wavelength is 630 nm. Suppose that the radius of the aperture can be increased from 0.5 mm, determine: (a) The first two radii when the center intensity at the reception screen is maximum. (b) The first two radii when the center intensity is minimum.

ansver
Answers: 2

Another question on Physics

question
Physics, 21.06.2019 21:00
A150 w lamp emits light of wavelength 590 nm uniformly in all directions. what is the photon flux (photons per unit area per unit time) on a small screen at a distance 2.3 m from the lamp? assume the photons are uniformly distributed over the surface of a sphere of radius 2.3 m.
Answers: 2
question
Physics, 22.06.2019 10:50
Two rigid transformations are used to map δhjk to δlmn. the first is a translation of vertex h to vertex l. what is the second transformation? a reflection across the line containing hk a rotation about point h a reflection across the line containing hj a rotation about point k
Answers: 1
question
Physics, 23.06.2019 00:00
Mixing salt in water is an example of physical change
Answers: 1
question
Physics, 23.06.2019 05:30
Oxygen gas enters well-insulated diffuser at 25 lbf/in.2, 420r, with a velocity of 860 ft/s through a flow area of 1.6 in.^2. at the exit, the flow area is 12 times the inlet area, and the velocity is 19 ft/s. the potential energy change from inlet to exit is negligible. assuming ideal gas behavior for the oxygen and steady-state operation of the diffuser, determine the following: (a) the exit temperature, in r(b) the exit pressure, in lbf/in.^2 (c) the mass flow rate, in lb/s
Answers: 3
You know the right answer?
In the Fresnel circular aperture setup, the distances from the aperture to the light source and the...
Questions
question
Mathematics, 13.07.2019 05:30
question
Biology, 13.07.2019 05:30
Questions on the website: 13722367