subject
Physics, 28.01.2021 20:00 ejsteel2

Please help me, i'll mark brainliest! Part 1: Rube Goldberg Interactive
Use the interactive version of a Rube Goldberg machine in the lesson. Fix the device so the flow of energy is not interrupted, and the window shade can be closed.

Give three examples, from the lab, where potential energy was converted to kinetic energy.
Describe the five adjustments you made to the Rube Goldberg device in order to keep the flow of energy going.
What was a constraint (a limitation or a condition) in this version?

Part 2: Design your own Rube Goldberg Device
Now that you’ve seen and used the virtual option, it’s time to design your own!

You should design, test, and redesign your device. It’s ok to test and redesign more than once if you need to!
Consider what constraints your project will have (example: you may limit your types of materials, the number of steps you plan to include, or the space it will take up).
Also think about what energy conversions will happen. You will need to show a minimum of five energy conversions (example: potential to kinetic).

Option 1 Draw It:
Draw a device and explain how it will work with a written description of energy conversions on this worksheet. You can draw the device freehand and scan or photograph the drawing for submission to your instructor. You may also use a program on your computer to create your device. (PLEASE INCLUDE A PICTURE)

Description:
In this section, include a clear written description and explanation of the work the device is designed to complete. Be sure to include descriptions of how the device works and properly label the energy conversions.

Discuss how having constraints affected your design.

Explain one way you redesigned your device after testing it.

Part 3: Energy Conversions
Record your data in the chart and include at least 5 potential-kinetic energy conversions shown in the device construction.

Example Item Description of potential-kinetic energy conversion
Example Book The book had potential energy when it was on the table. Then as the book fell off the table, it was in motion and had kinetic energy.
1
2
3
4
5

Part 4: Analysis Questions
Consider the device you created.
Is energy exchanged between your system (the device) and its surroundings?
Is matter exchanged between your system (the device) and its surroundings?
Is it an open, closed or isolated system? Explain.
What is the law of conservation of energy?
Describe two examples of how the law of conservation of energy is demonstrated in the device you created.
In the lesson a thermos is presented as an example of an isolated energy system. How could you change the thermos into an open energy system?

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 12:00
Ihave a density of 1.61g/cm^3 and a mass of 28g. find the missing value
Answers: 1
question
Physics, 22.06.2019 14:10
In one or two sentences, describe how you did in the balancing game. in a few more sentences, explain one strategy you learned for balancing more complex equations.
Answers: 2
question
Physics, 22.06.2019 14:20
4r-134a enters the condenser of a residential heat pump at 800 kpa and 50°c at a rate of 0.022 kg/s and leaves at 750 kpa subcooled by 3°c. the refrigerant enters the compressor at 200 kpa superheated by 4°c determine (a) the isentropic efficiency of the compressor, (b) the rate of heat supplied to the heated room, and (c) the cop of the heat pump. also, determine (d) the cop and rate of heat supplied to the heated room if this heat pump operated on the ideal vapor-compression cycle between the pressure limits of 200 and 800 kpa. (0.757, 4.37 kw, 5.12, 6.18, 3.91 kw)
Answers: 3
question
Physics, 22.06.2019 17:00
Adiver named jacques observes a bubble of air rising from the bottom of a lake (where the absolute pressure is 3.50 atm) to the surface (where the pressure is 1.00 atm). the temperature at the bottom is 4.00 ∘c, and the temperature at the surface is 23.0 ∘c.what is the ratio of the volume of the bubble as it reaches the surface (vs) to its volume at the bottom (vb)? if jaques were to hold his breath the air in his lungs would be kept at a constant temperature. would it be safe for jacques to hold his breath while ascending from the bottom of the lake to the surface?
Answers: 1
You know the right answer?
Please help me, i'll mark brainliest! Part 1: Rube Goldberg Interactive
Use the interactive v...
Questions
question
Mathematics, 05.11.2020 18:40
question
Mathematics, 05.11.2020 18:40
Questions on the website: 13722367