subject
Physics, 10.02.2021 20:50 anaunderscoret12

If the magnetic force is 3.5 × 10–2 N, how fast is the charge moving?


If the magnetic force is 3.5 × 10–2 N, how fast is the charge moving?

ansver
Answers: 2

Another question on Physics

question
Physics, 21.06.2019 19:30
The lights used by mark watley (played by matt damon) during the film the martian seem to be metal halide lamps. metal halide lamps are filled with vaporized mercury and metal-halogen compounds. when an electric current is passed through the lamp, the tube begins to glow a bright white/blue color. if you were to pass this light through a prism to separate the individual light frequencies, you would see a rainbow just as you would if using natural sunlight because of the complexity of the metal halide gas and the vast amount of possible electron transitions. (the study of light in this way is known as spectroscopy and allows astronomers to know exactly what atoms compose distant stars, simply by looking at the light they emit. the spectral lines an atom produces uniquely identifies that atom just like a fingerprint uniquely identifies a person. the momentum equation and energy equation that we have used above can be combined to give the following equation: c = e p where again p is the phonon momentum, e is the photon energy and c is the speed of light. when you divide the photon energy found in #6 by the photon momentum found in #4, do you get the speed of light? (if not, check your work for questions #4 through #6). yes no
Answers: 2
question
Physics, 22.06.2019 11:40
Consider the following position function. find (a) the velocity and the speed of the object and (b) the acceleration of the object. bold r left parenthesis t right parenthesisr(t)equals=left angle 6 t superscript 4 baseline comma 2 t cubed right angle6t4,2t3 for tgreater than or equals≥0
Answers: 3
question
Physics, 22.06.2019 12:30
As part of your daily workout, you lie on your back and push with your feet against a platform attached to two stiff springs arranged side by side so that they are parallel to each other. when you push the platform, you compress the springs. you do an amount of work of 79.0 j when you compress the springs a distance of 0.230 m from their uncompressed length. (a) what magnitude of force must you apply to hold the platform in this position? (b)how much additional work must you do to move the platform a distance 0.230 m farther? (c) what maximum force must you apply to move the platform a distance 0.230 m farther?
Answers: 1
question
Physics, 22.06.2019 15:30
The movement of electrons between atoms is called an
Answers: 2
You know the right answer?
If the magnetic force is 3.5 × 10–2 N, how fast is the charge moving?
...
Questions
question
Geography, 30.07.2019 22:30
Questions on the website: 13722360