subject
Physics, 11.02.2021 22:00 milly1903

Students want to investigate the inverse relationship between the pressure and temperature of an ideal gas as predicted by the ideal gas law. Their plan is to use a gas filled cylinder with a movable piston on one end and a heater inside that can be turned on and off. The students will the measure the pressure and temperature of the gas. Which of the following refinements to this procedure will allow the students to observe the predicted relationship between pressure and temperature? Select two answers A. Start with enough gas to have a pressure near atmospheric pressure, and repeat the experiment, removing gas from the cylinder each time.
B. Fix the piston in place so the volume of the pas remains constant.
C. Ensure the piston and cylinder walls are insulated to the gas can reach equilibrium for each set of measurements
D. Conduct the investigation under conditions of very high pressure to ensure ideal gas behavior

ansver
Answers: 1

Another question on Physics

question
Physics, 21.06.2019 14:30
How much work does the charge escalator do to move 2.30 μc of charge from the negative terminal to the positive terminal of a 3.00 v battery?
Answers: 1
question
Physics, 22.06.2019 00:20
Aparticle of mass m is projected with an initial velocity v0 in a direction making an angle α with the horizontal level ground as shown in the figure. the motion of the particle occurs under a uniform gravitational field g pointing downward. (a) write down the lagrangian of the system by using the cartesian coordinates (x, y). (b) is there any cyclic coordinate(s). if so, interpret it (them) physically. (c) find the euler-lagrange equations. find at least one constant of motion. (d) solve the differential equation in part (c) and obtain x and y coordinates of the projectile as a function of time. (e) construct the hamiltonian of the system, h, and write down the hamilton’s equations (canonical equations) of motion.
Answers: 2
question
Physics, 22.06.2019 10:30
Aparticle moves in the xy plane with constant acceleration. at time zero, the particle is at x = 6 m, y = 8.5 m, and has velocity ~vo = (9 m/s) ˆı + (−2.5 m/s) ˆ . the acceleration is given by ~a = (4.5 m/s 2 ) ˆı + (3 m/s 2 ) ˆ . what is the x component of velocity after 3.5 s? answer in units of m/s.
Answers: 1
question
Physics, 22.06.2019 17:50
If there's a small amount of friction between two surfaces, the result could be select all that applya. no movement b. heatc. a little bit of movementd. sliding around
Answers: 2
You know the right answer?
Students want to investigate the inverse relationship between the pressure and temperature of an ide...
Questions
question
Mathematics, 11.03.2021 08:20
question
Geography, 11.03.2021 08:20
question
History, 11.03.2021 08:20
Questions on the website: 13722359