subject
Physics, 24.06.2021 03:00 hjohnsonn102010

Two loudspeakers are about 10 m apart in the front of a large classroom. If either speaker plays a pure tone at a single frequency of 400 Hz, the loudness seems pretty even as you wander around the room, and gradually decreases in volume as you move farther from the speaker. If both speakers then play the same tone together, what do you hear as you wander around the room? A. The sound is louder but maintains the same relative spatial pattern of gradually decreasing volume as you move away from the speakers.
B. The pitch of the sound increases to 800 Hz, and the sound is louder but not twice as loud. It is louder closer to the speakers and gradually decreases as you move away from the speakers−except near the back wall, where a slight echo makes the sound louder.
C. As you move around the room, some areas seem to be dead spots with very little sound, whereas other spots seem to be louder than with only one speaker.
D. The sound is twice as loud−so loud that you cannot hear any difference as you move around the room.
E. At points equidistant from both speakers, the sound is twice as loud. In the rest of the room, the sound is the same as if a single speaker were playing.

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 01:00
Red’s momentum vector before the collision is green’s momentum vector after the collision. question 1 options: shorter than longer than equal to question 2 (1 point) saved since green bounces off red, this must be an collision. question 2 options: explosion inelastic elastic question 3 (1 point) saved red transfers of its momentum to green during the collision. question 3 options: little all most none question 4 (4 points) why does red transfer all its momentum to green? back up your answer with information from the simulation. write at least 2 sentences. question 4 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 5 (1 point) now make red much heavier than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). red during the collision because it transferred some momentum to green. question 5 options: sped up kept the same velocity slowed down question 6 (1 point) green sped up during the collision as it question 6 options: lost momentum to red maintained a constant momentum. gained momentum from red question 7 (1 point) after the collision . . question 7 options: red bounced off green and went to the left. green moved to the right. both green and red stopped as they have lost all momentum. red stopped and green moved to the right. both green and red moved to the right. question 8 (4 points) only some of red’s momentum was transferred to green. why did this occur? back up your answer with information from the simulation. write at least 2 sentences. question 8 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 9 (1 point) now make red much lighter than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). which is true about the collision? question 9 options: green slowed down after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have gained momentum. green slowed down after the collision therefore it must have gained momentum. question 10 (1 point) since green gained momentum, red had to have momentum because you cannot create or destroy momentum. question 10 options: lost kept the same amount of gained question 11 (1 point) since green was so much and harder to move, it caused red to bounce back to the left giving red . question 11 options: lighter. . . . negative heavier . . . . negative lighter. . . . positive heavier . . . . positive question 12 (4 points) now, click on more data at the bottom of the sim. play with different numbers for the masses and starting velocities. you can even make the starting velocities negative! tell me one thing you discovered by adjusting the speeds and masses. write at least 2 sentences. be specific and use words like velocity, momentum, mass, increased, decreased, etc. question 12 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. part 2: inelastic collisions question 13 (1 point) click on the "less data" box at the bottom of the sim. in the green box, slide the elasticity meter all the way to inelastic so there is 0% elasticity: make the masses whatever size suits you. make sure that green starts out with a velocity of 0 m/s – if you didn’t change this in the last step, you don’t need to do anything. push play and observe! true or false: when red and green collide, they stick together. question 13 options: true false question 14 (1 point) the velocity of red & green after the collision is the velocity that red started off with. question 14 options: larger than smaller than equal to
Answers: 1
question
Physics, 22.06.2019 03:00
Dinate system, and a charge q = - 2.00 nc is placed s2 10 n> c. (a) what is the change in electric potential energy when the dipole moment of a molecule changes its orientation with respect to es from parallel to perpendicular? (b) at what absolute temperature t is the average translational kinetic energy 32 kt of a molecule equal to the change in potential energy calculated in part(: abovethistemperature,thermalagitationprevents the dipoles from aligning with the electric field.) placed in a uniform electric field e with magnitude 1.6 * 6 on the positive x-axis at x = 4.00 cm. (a) if a third charge q3 = +6.00 nc is now placed at the point x = 4.00 cm, y = 3.00 cm, find the x- and y-components of the total force exerted on this charge by the other two. (b) find the magnitude and direction of figure p21.62 ll uu 21.55 . torque on a dipole. an electric dipole with dipole moment ps is in a uniform external electric field es. (a) find the orientations of the dipole for which the torque on the dipole is zero. (b) which of the orientations in part (a) is stable, and which is unstable? (hint: consider a small rotation away from the equi- librium position and see what happens.) (c) show that for the stable orientation in part (b), the dipole’s own electric field tends to oppose the external field. 21.62 ..
Answers: 1
question
Physics, 22.06.2019 14:40
14. a body is projected with velocity vi from a.at the same time another body is projectedvertically upwards from point b withvelocity v2 lies vertically below the highestpoint. both the bodies collide thenv2÷v1is
Answers: 1
question
Physics, 22.06.2019 17:00
Two conductors, a and b, are each in the shape of a tetrahedron. but of different sizes. they are charged in the following manner: 1. tetrahedron a is charged from an electrostatic generator to charge q. 2. tetrahedron a is briefly touched to tetrahedron b. 3. steps 1 and 2 are repeated until the charge on tetrahedron b reaches a maximum value. if the charge on tetrahedron b was q/4 after the first time it touched tetrahedron a. what is the final charge qbmax on tetrahedron b?
Answers: 2
You know the right answer?
Two loudspeakers are about 10 m apart in the front of a large classroom. If either speaker plays a p...
Questions
question
Mathematics, 08.07.2019 16:30
question
Social Studies, 08.07.2019 16:30
Questions on the website: 13722363