subject
Engineering, 27.04.2021 14:50 kyliech023

) A flow is divided into two branches, with the pipe diameter and length the same for each branch. A 1/4-open gate valve is installed in line A, and a 1/3-closed ball valve is installed in line B. The head loss due to friction in each branch is negligible compared with the head loss across the valves. Find the ratio of the velocity in line A to that in line B (include elbow losses for threaded pipe fittings).

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Aloaded platform of total mass 500 kg is supported by a dashpot and by a set of springs of effective stiffness 72 kn/m. it is observed that when the platform is depressed through a distance x = 12.5 cm below its equilibrium position and then released without any initial velocity; it reaches its equilibrium position in the shortest possible time without overshoot. find the position and velocity of the loaded platform 0.10 sec. after its release. if a further load of 400 kg is added to the platform, find, i) the frequency of damped vibrations, and i) the amplitude of vibration after 2 complete oscillations, given that the initial amplitude is 15 cm.
Answers: 1
question
Engineering, 04.07.2019 18:10
The higher the astm grain-size number, the coarser the grain is. a)-true b)-false
Answers: 3
question
Engineering, 04.07.2019 18:20
Aquick transition of the operating speed of a shaft from its critical speed will whirl amplitude. (a) increase (b) limit (c) not affect (d) zero
Answers: 2
question
Engineering, 04.07.2019 19:20
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
You know the right answer?
) A flow is divided into two branches, with the pipe diameter and length the same for each branch. A...
Questions
Questions on the website: 13722363